Поиск в словарях
Искать во всех

Физический энциклопедический словарь - эксперим. методы р. с. а.

 

Эксперим. методы р. с. а.

эксперим. методы р. с. а.
Для создания условий дифракции и регистрации излучения служат рентгеновские камеры, рентгеновские дифрактометры и рентгеновские гониометры. Рассеянное рентг. излучение в них фиксируется на фотоплёнке или измеряется детекторами ядерных излучений. В зависимости от состояния исследуемого образца и его св-в, а также от характера и объёма информации, к-рую необходимо получить, применяют разл. методы Р. с. а. Монокристаллы, отбираемые для исследования ат. структуры, должны иметь размеры ~0,1 мм и по возможности обладать совершенной структурой. Исследованием дефектов в сравнительно крупных почти совершенных кристаллах занимается рентгеновская топография, к-рую иногда относят к Р. с. а.

Метод Лауэ — простейший метод получения рентгенограмм от монокристаллов. Кристалл в эксперименте Лауэ неподвижен, а используемое

рентг. излучение имеет непрерывный спектр. Расположение дифракц. пятен на лауэграммах (см. рис. в ст. Лауэграмма) зависит от симметрии кристалла и его ориентации относительно падающего луча, что позволяет установить его принадлежность к одной из 11 лауэвских групп симметрии и определять направление его кристаллографич. осей (ориентировать) с точностью до неск. угловых минут. По характеру пятен на лауэграммах, и особенно появлению астеризма, можно выявить внутр. напряжения и нек-рые др. дефекты кристаллич. структуры. Методом Лауэ проверяют качество монокристаллов при выборе образца для его более полного структурного исследования (см. также Лауэ метод).

М е т о д ы к а ч а н и я и в р а щ е н и я образца используют для определения периодов повторяемости (постоянной решётки) вдоль кристаллографич, направления в монокристалле. Они позволяют, в частности, установить параметры а, b, с элем. ячейки кристалла. В этом методе используют монохроматич. рентг. излучение, образец приводится в колебат. или вращат. движение вокруг оси, совпадающей с кристаллографич. направлением, вдоль к-рого и исследуют параметры а, b, с. Пятна на рентгенограммах качания и вращения, полученных в цилиндрич. кассетах, располагаются на семействе параллельных линий (рис. 1). Зная расстояние между этими линиями,  и диаметр кассеты можно вычислить искомые параметры кристалла. Условия (1) для дифракц. лучей в этом методе выполняются за счёт изменения углов при качании или вращении образца.

Р е н т г е н г о н и о м е т р и ч е с к и е м е т о д ы. Для полного исследования структуры монокристалла методами Р. с. а. необходимо не только установить положение, но и измерить интенсивности как можно большего числа дифракц. отражений, к-рые могут быть получены от кристалла при данной  и всех возможных ориентациях образца. Интенсивность определяют фотографически, измеряя микрофотометром степень почернения каждого пятна на рентгенограмме, или регистрируют непосредственно с помощью счётчиков рентг. квантов, что повышает чувствительность и точность измерений. Чтобы иметь полный набор отражений, в рентг. гониометрах получают серию рентгенограмм. На каждой из них фиксируются дифракц. отражения, на кристаллографич. индексы к-рых накладываются определ. ограничения (напр., на разных рентгенограммах регистрируются отражения типа hk0, hk1 и т. д., рис. 2).

Для установления ат. структуры ср. сложности (~50—100 атомов в элем. ячейке) необходимо измерить интенсивности неск. сотен и даже тысяч дифракц. отражений. Эту весьма трудоёмкую и кропотливую работу автоматич. микроденситометры и дифрактометры, управляемые ЭВМ, иногда выполняют в течение неск. недель (например, при анализе структур белков, когда число отражений ~105).

Рис. 1. Рентгенограммы минерала сейдозерита, полученные методами вращения (вверху) и качания (внизу) кристалла. Уменьшая угол качания, можно зафиксировать отд. отражения без перекрытия.

Рис. 2. Рентгенограмма минерала сейдозерита, полученная в рентг. гониометре Вайсенберга. Зарегистрированные отражения имеют индексы hk0. Отражения, расположенные на одной кривой, характеризуются постоянными k.


Значительно сокращают время эксперимента многоканальные дифрактометры.

М е т о д и с с л е д о в а н и я п о л и к р и с т а л л о в (метод Дебая — Шеррера). Для исследования металлов, сплавов, крист. порошков, состоящих из множества мелких монокристаллов, используют монохроматич. излучение. Рентгенограмма поликристаллов (дебаеграмма) представляет собой неск. концентрич. колец,

640



каждое из к-рых состоит из отражений от определённой системы плоскостей различно ориентированных кристаллов. Дебаеграммы разл. в-в имеют индивидуальный характер и позволяют идентифицировать соединения, определять фазовый состав образцов, размеры и преимуществ. ориентацию (текстурирование) зёрен в в-ве, осуществлять контроль за напряжениями в образце и др. (см. Рентгенография материалов, Дебая Шеррера метод).

И с с л е д о в а н и е а м о р ф н ы х м а т е р и а л о в и ч а с т и ч н о у п о р я д о ч е н н ы х о б ъ е к т о в. Рентгенограмму с чёткими дифракц. максимумами можно получить только при полной трёхмерной периодичности образца. Чем ниже степень упорядоченности его ат. строения, тем более размытый, диффузный характер имеет рассеянное им рентг. излучение. Диаметр диффузного кольца на рентгенограмме аморфного в-ва (рис. 3) может служить для грубой оценки ср. межатомных расстояний в нём. С ростом степени упорядоченности (см. Дальний и ближний порядок) в строении объектов дифракц. картина усложняется (рис. 4) и, следовательно, содержит больше структурной информации.


Рис. 3. Рентгенограмма аморфного в-ва (ацетата целлюлозы).

Рис. 4. Рентгенограммы биол. объектов: а — волоса; б — натриевой соли ДНК во влажном состоянии; в — текстуры натриевой соли ДНК.


М е т о д м а л о у г л о в о г о р а с с е я н и я позволяет изучать пространств. неоднородности в-ва, размеры к-рых превышают межатомные расстояния и составляют от 5—10 до ~104 Å. Размеры неоднородностей в этом случае во много раз превышают длину волны используемого излучения, поэтому рассеянное рентг. излучение концентрируется вблизи первичного пучка — в области малых углов рассеяния. Распределение интенсивности в этой области отражает особенности структуры исследуемого объекта. Малоугловое рассеяние применяют для изучения пористых и мелкодисперсных материалов, сплавов и сложных биол. объектов. Для изолир. молекул белка и нуклеиновых к-т метод позволяет определять форму, размеры, мол. массу; в вирусах — характер взаимной укладки составляющих их компонент (белка, нуклеиновых к-т, липидов); в синтетич. полимерах — упаковку полимерных цепей; в порошках и сорбентах — распределение ч-ц и пор по размерам; в сплавах — возникновение и размеры фаз; в текстурах (в частности, в жидких кристаллах) — форму упаковки ч-ц (молекул) в различного рода надмолекулярные структуры. Рентг. малоугловой метод применяется и в пром-сти при контроле процессов изготовления катализаторов, высокодисперсных углей и т. д. В зависимости от строения объекта измерения производят для углов рассеяния от долей мин до нескольких град.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):